5 resultados para SUBUNIT

em Aquatic Commons


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atlantic menhaden (Brevoortia tyrannus), through landings, support one of the largest commercial fisheries in the United States. Recent consolidation of the once coast-wide reduction fishery to waters within and around Chesapeake Bay has raised concerns over the possibility of the loss of unique genetic variation resulting from concentrated fishing pressure. To address this question, we surveyed variation at the mitochondrial cytochrome c oxidase subunit I (COI) gene region and seven nuclear microsatellite loci to evaluate stock structure of Atlantic menhaden. Samples were collected from up to three cohorts of Atlantic menhaden at four geographic locations along the U.S. Atlantic coast in 2006 and 2007, and from the closely related Gulf menhaden (B. patronus) in the Gulf of Mexico. Genetic divergence between Atlantic menhaden and Gulf menhaden, based on the COI gene region sequences and microsatellite loci, was more characteristic of conspecific populations than separate species. Hierarchical analyses of molecular variance indicated a homogeneous distribution of genetic variation within Atlantic menhaden. No significant variation was found between young-of-the-year menhaden (YOY) collected early and late in the season within Chesapeake Bay, between young-of-the-year and yearling menhaden collected in the Chesapeake Bay during the same year, between YOY and yearling menhaden taken in Chesapeake Bay in successive years, or among combined YOY and yearling Atlantic menhaden collected in both years from the four geographic locations. The genetic connectivity between the regional collections indicates that the concentration of fishing pressure in and around Chesapeake Bay will not result in a significant loss of unique genetic variation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Contemporary in-depth sequencing of environmental samples has provided novel insights into microbial community structures, revealing that their diversity had been previously underestimated. Communities in marine environments are commonly composed of a few dominant taxa and a high number of taxonomically diverse, low-abundance organisms. However, studying the roles and genomic information of these “rare” organisms remains challenging, because little is known about their ecological niches and the environmental conditions to which they respond. Given the current threat to coral reef ecosystems, we investigated the potential of corals to provide highly specialized habitats for bacterial taxa including those that are rarely detected or absent in surrounding reef waters. The analysis of more than 350,000 small subunit ribosomal RNA (16S rRNA) sequence tags and almost 2,000 nearly full-length 16S rRNA gene sequences revealed that rare seawater biosphere members are highly abundant or even dominant in diverse Caribbean corals. Closely related corals (in the same genus/family) harbored similar bacterial communities. At higher taxonomic levels, however, the similarities of these communities did not correlate with the phylogenetic relationships among corals, opening novel questions about the evolutionary stability of coral-microbial associations. Large proportions of OTUs (28.7–49.1%) were unique to the coral species of origin. Analysis of the most dominant ribotypes suggests that many uncovered bacterial taxa exist in coral habitats and await future exploration. Our results indicate that coral species, and by extension other animal hosts, act as specialized habitats of otherwise rare microbes in marine ecosystems. Here, deep sequencing provided insights into coral microbiota at an unparalleled resolution and revealed that corals harbor many bacterial taxa previously not known. Given that two of the coral species investigated are listed as threatened under the U.S. Endangered Species Act, our results add an important microbial diversity-based perspective to the significance of conserving coral reefs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phylogenetic relationships among all described species (total of 12 taxa) of the decapoda, were examined with nucleotide sequence data from portions of mitochondrial gene and cytochrome oxidase subunit I (COI). The previous works on phylogeny proved that the mitochondrial COI gene in crustacean is a good discriminative marker at both inter- and intra-specific levels. We provide COI barcode sequences of commertial decapoda of Oman Sea, Persian Gulf, Iran. Industrial activities, ecologic considerations, and goals of the decapoda Barcode of Life campaign make it crucial that species of the south costal be identified. The reconstruction of evolut phylogeny of these species are crucial for revealing stock identity that can be used for the management of fisheries industries in Iran. Mitochondrial DNA sequences were used to reconstruct the phylogeny of the Penaeus species of marine shrimp. For this purpose, DNA was extracted using phenol- chloroform well as CTAB method. The evolutionary relationships among 12 species of the decapoda were examined using 610 bp of mitochondrial (mt) DNA from the cytochrome oxidase subunit I gene. Finally the cladograms were compared and the resulted phylogenetic trees confirmed that the Iran's species origin is Indo-west pacific species. Iran's species, which were not grouped with the other decapoda taxa seem to always form a sister clade with Indo-west pacific species with strong bootstrap support 100%. The result completely agrees with the previously defined species using morphological characters.However, we still lack any comprehensive and clear understanding of phylogenetic relationships in this group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The order Zoantharia (Zoanthids) is one of the most neglected orders of cnidarians in the Persian Gulf. The present study aims to investigate the biodiversity of this order with morphological and molecular examination in the Persian Gulf. For this purpose, 123 colonies of zoanthids with variety of shape and colors have been collected from intertidal and shallow water zone of four islands, i. e. Hengam, Qeshm, Larak and Hormoz. After sampling, morphological characteristics of each specimen were recorded based on in situ photographs. Then DNA was extracted using the cetyl trimethyl ammonium bromide (CTAB) method. Both mitochondrial 16S ribosomal DNA (mt 16S rDNA) and cytochrome oxidase subunit I (COI) gene fragments were amplified and sequenced. The results of preliminary morphological identification integrated with two mitochondrial markers sequencing demonstrated the presence of five different species in this region; Zoanthus sansibaricus, Palythoa mutuki, Palythoa cf. mutuki, Palythoa tuberculosa and Neozoanthus persicus?. Although at first sight, morphological properties were not successful to delineate zoanthid species, they become reliable criteria to identify and delineate species in field studies after molecular identification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study describes the molecular identification of sixteen fish species present in processed products imported into Iran for human consumption. DNA barcoding using direct sequencing of about 650 bp of the mitochondrial Cytochrome Oxidase subunit I gene revealed incorrect labeling (31.25%). Substitution of fish species constitutes serious economic fraud, and our results increase concern regarding the trading of processed fish products in Iran from both health and conservation points of view.